Loyola College B.Sc. Statistics April 2007 Resource Management Techniques Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.

LO 19

DEGREE EXAMINATION –STATISTICS

THIRD SEMESTER – APRIL 2007

ST 3100 – RESOURCE MANAGEMENT TECHNIQUES

 

 

Date & Time: 02/05/2007 / 9:00 – 12:00        Dept. No.                                                     Max. : 100 Marks

 

 

PART – A

Answer all the questions.                                                           (10 x 2 = 20 Marks)

 

  1. What is the need for an artificial variable in a linear programming problem?
  2. How many basic solutions can be obtained for a system of 3 equations with 5 variables?
  3. Explain the need for a transportation problem.
  4. Express assignment problem as a linear programming problem.
  5. What is the objective of a sequencing problem?
  6. When an activity is called critical in a project?
  7. Distinguish between CPM and PERT.
  8. Define holding cost and shortage cost in an inventory model.
  9. Write the formula for EOQ in a single item static model explaining the notations used.
  10. What are the assumptions in a single item static model?

 

PART – B

Answer any five questions.                                                        (5 x 8 = 40 Marks)

 

  1. Nerolac produces both interior and exterior paints from 2 raw materials R1 and R2. The following data provides the basic data of the problem:

 

Tons of raw material               Maximum availability

per ton

Interior                    Exterior

Raw material, R1                         6                  4                                  24

Raw material, R2                         1                  2                                    6

Profit per ton in 000’s                 5                  4

A market survey indicates that the daily demand for interior paint cannot exceed that of exterior paint by more than 1 ton.  Also, the maximum daily demand of interior paint is 2 tons.

Nerolac wants to find the optimum product mix of interior and exterior paints that maximizes the total daily profit.

Formulate the problem as a linear programming problem.

 

  1. Solve the following linear programming problem graphically.

Max     Z  =  4 x1 + 3 x2

Subject to

2x1 + x2 £ 1000

x1+ x2 £  800

x1 £ 400

x£ 700

x1, x2  ³ 0

  1. Obtain the initial basic feasible solution to the following transportation problem using least cost method.

Distribution Centre                                         Availability

W                    X                     Y                     Z

 

 

A    20                    25                    50                    12             450

 

Factory     B    45                    50                    15                    40             500

 

C     22                   10                    45                    45             550

 

Requirement    500                  400                  300                  300

 

  1. Four operators are to be assigned to 4 jobs in a company. The time needed by the operators for the jobs are given below.  How should the jobs be assigned so that the time is minimised?

 

Operators

A         B         C         D

 

 

I           15        13        14        17

 

II         11        12        15        13

Jobs

III        18        12        10        11

 

IV        15        17        14        16

 

 

  1. A book binder has one printing press, one binding machine and the manuscripts of a number of different books. The time required to perform the printing and binding operations for each book are known.  Determine the order in which the books should be processed in order to minmise the total time required to process all the books.  Find also the total time required.

 

Processing time

1         2         3         4         5

Printing time               40        90        80        60        50

Binding time               50        60        20        30        40

 

 

 

 

 

 

 

  1. Draw the network for the data given below and compute the critical path.

 

Activity                     Predecessor             Time (weeks)

 

A                                 ¾                                3

B                                 ¾                                5

C                                 ¾                                4

D                                 A                                 2

E                                  B                                 3

F                                  C                                 9

G                                 D, E                             8

H                                 B                                 7

I                                   H, F                             9

 

  1. Find the optimum order quantity for a product for which the price breaks are as

follows

Quantity                                  Unit cost (Rs.)

0 £ y <500                                    10

500 £ y                                         9.25

The monthly demand for the product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering is Rs.350.

 

  1. Discuss in detail the factors affecting inventory control.

 

 

PART – C

Answer any Two questions.                                                       (2 x 20 = 40 Marks)

 

  1. Use simplex method to solve

Max Z  =  2x1  +  3x2  subject to

x1 + x£  4,   – x1  +  x2  £ 1,  x1  +  2x2  £  5

x1,  x2  ³  0

 

  1. A company has 3 factors A, B, C and four distributors W, X, Y and Z. The monthly production capacity and demand for the distribution centers and the unit transportation costs are given below.

Distribution center                   Availability

W        X        Y        Z

Factory      A         20        25        50        10                    4500

B         45        50        15        40                    5000

C         22        10        45        35                    5500

Demand              5000    4000    3000    3000

 

  1. A project consists of activities A, B, C, _ _ _ _ H, I. Construct the network diagram for the following constraints.

A < D;  A < E;  B < F;  C < G;  D < H:  E, F < I

The project has the following time estimates (in days).

Task                             A         B        C        D        E         F          G         H         I

Optimistic time           5         18        26        16        15        6         7          7          3

Pessimistic time           10        22        40        20        25        12        12        9          5

Most likely time          8         20        33        18        20        9         10        8         4

Obtain the expected times and their variances.  Also obtain the critical path and total float, free float for the activities.

 

  1. a) Explain a single item static model with no shortages in detail.
  2. b) An oil manufacturer purchases lubricants at the rate of Rs.42 per piece from a vendor. The requirement of these lubricants is 1800 per year. What should be the order quantity per order, if the cost per placement of an order is Rs.16 and inventory carrying charge per piece per year is only 20 paise?

 

Go To Main page   

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur